
1

Large-Scale Invisible Attack on AFC Systems
with NFC-Equipped Smartphones

Fan Dang1, Pengfei Zhou1, 2, Zhenhua Li1, Ennai Zhai3, Aziz Mohaisen4,
Qingfu Wen1, Mo Li5

1 School of Software, Tsinghua University, China
2 Beijing Feifanshi Technology Co., Ltd., China
3 Department of Computer Science, Yale University, USA
4 Department of Computer Science and Engineering, State University of New York at Buffalo, USA
5 School of Computer Science and Engineering, Nanyang Technological University, Singapore

2

Introduction!

Automated Fare Collection (AFC) system

3

Introduction!

MIFARE Classic

Processor Cards

4

Introduction!

Generate Random
Number (R)

Secret
Key (K)

=?

Accept

Reject

Secret
Key (K)

Smart Card Terminal

External Authentication: a card verifies a terminal

Card Terminal

5

Introduction!

Generate Random
Number (R)

Secret
Key (K)

=?

Accept

Reject

Secret
Key (K)

Smart Card Terminal

Internal Authentication: a terminal verifies a card

Terminal Card

6

Introduction!

Random Number

Data with MAC

Message authentication code: MAC = Digest(data, rnd, key)

7

Introduction!

What is a possible flaw?

8

Flaw!

ISO/IEC 14443-4 based
Millions issued

City Traffic Card

9

Flaw!

Entrance

Exit

2. Entrance
Data

3. Calculate Price

4. Debit
6. Tr

ansaction

Log

1. Entrance
Data

Database

AFC Backend

5. Auth Code

10

Flaw!

need to have NFC-equipped smartphones and have installed
LessPay – our developed HCE app based on our constructed
attack – on their smartphones. Fig. 1 presents a step-by-step
workflow of our constructed attack. In the attack, there are two
important phases: tampering entrance data (Step 1-2 in Fig. 1)
and relay attack on AFC card (Step 4-7 in Fig. 1), which we
outline in the following.

• Phase 1: Tampering entrance data. As shown in Fig. 1,
when a LessPay user wants to have a trip by metro, she
first taps her smartphone on an entrance terminal. Then,
the entrance terminal writes the entrance data into the AFC
card emulated by LessPay, indicating the user’s entrance
station and timestamp. Subsequently, the entrance data is
reported to the cloud of LessPay via a cellular connection
(Step 1 in Fig. 1). After receiving the entrance data, the cloud
periodically sends fake entrance data to the user (Step 2), in
order to minimize the expected fare paid by her (note that
the cloud does not know the user’s destination). In practice,
the period is typically configured as two minutes and the
cellular traffic cost is within tens of KBs.

• Phase 2: Relay attack on AFC card. When the user reaches
her destination, she taps her smartphone on an exit terminal,
and the exit terminal calculates how much the user should
pay for the trip according to the fake entrance data (Step 3).
Afterwards, the exit terminal sends a debit message to the
emulated AFC card, which is instantly forwarded to the cloud
by LessPay (Step 4). On the cloud side, this debit message
is first relayed to the physical AFC card corresponding to
the emulated AFC card (Step 5), and then the message
authentication code (MAC) is relayed to the web server
(Step 6). Finally, the web server returns the debit message
together with MAC to LessPay (Step 7) and a transaction
log is reported to the AFC backend by the exit terminal
(Step 8). So far, we finish a typical workflow of our attack.
According to our measurement results, the round trip time
from Step 4 to Step 7 is generally within 100 ms, which is
totally acceptable to user’s real-world experience.

At the heart of our attack architecture is an AFC card pool
that maintains a number of physical AFC cards for conducting
relay attacks (i.e., Step 5 and Step 6 in Fig. 1). The success of
relay attacks guarantees two important properties. First, AFC
backend cannot detect any data inconsistent during the process
of our attack, which means our attack is invisible to AFC
system operators. In other words, for an AFC system operator,
the debit & MAC provided by LessPay is indistinguishable
from the ones offered by a normal AFC card. Second, as the
web server (at the cloud side in Fig. 1) tampers both the station
and timestamp information in the entrance data to forge a very
short trip, we only need to maintain a relatively small number
of cards in the pool to serve for a large number of users, e.g.,
150 cards serving for 10,000 users. This is because our users’
very short fake trips can be easily scheduled by the cloud to
totally avoid conflicts.

Root

Card Info

Purse

Bus Data

Metro Data

Transaction History

Fig. 2: Example: File structure of CTC.

As a representative case study, we conducted real-world
attacks to the City Traffic Card (CTC) system in City X1

with tens of millions population. Specifically, 100 users were
recruited and each user randomly used LessPay to take a
subway 40 times a month. During three months’ experiments
(from Jan. 10th to Apr. 10th, 2016) with a total of 12,000
tests, 97.6% tests passed (the failed tests are owing to the
poor quality of cellular connections). After the experiments, all
AFC cards in our card pool still work well. This demonstrates
the feasibility and scalability of our designed attack. We have
reported the attack to several popular AFC systems including
CTC. Nevertheless, there does not seem to be a good solution
to prevent the attack in current AFC systems.

In summary, this paper makes the following contributions:
• We construct a large-scale invisible attack on AFC systems

with NFC-equipped smartphones, thus enabling users to pay
much less than actually required.

• We develop an HCE app, named LessPay, based on our
constructed attack (detailed in Section III).

• We evaluate LessPay with real-world large-scale experiments,
which not only demonstrate the feasibility of our attack (with
97.6% success rate), but also shows its low-overhead in terms
of bandwidth and computation (detailed in Section IV).
The rest of this paper is organized as follows. Section II

describes the overview of a typical AFC transaction. Section III
presents how we construct the attack and how we implement
an HCE app, named LessPay, to enable the attack in practice.
Section IV evaluates LessPay through both real-world case
study and overhead measurement. Section V reviews the related
works, and Section VI draws some conclusions.

II. OVERVIEW OF AN AFC TRANSACTION

Before we describe our constructed attack and the developed
app, LessPay, in Section III, this section shows an overview of
the working principle of current AFC transactions, including
stored file structure, entrance protocol, and exit protocol. Note
that entrance and exit protocols provide important insight for
our attack design.
File structure. Among today’s AFC systems, the majority of
AFC cards follow the ISO/IEC 14443 standard. In this standard,
data in a smart card is stored in a very simple file system,

1We use City X to anonymize the real name of the city for double-blind
review.

11

Flaw!organized in a hierarchical tree structure. Each file is identified
by its unique file identifier. As an example, Fig. 2 shows the
file structure of CTC. The basic card information including
card number, card type, and expiration is stored under the root
directory. The data involved in bus or metro transactions are
stored in the purse directory.

Entrance protocol. When a passenger (with an AFC card)
wants to enter a station, the AFC system needs to execute the
entrance protocol, which is shown in Fig. 3.

First, the station’s terminal requests and reads the basic
information of this passenger’s AFC card, including the card
number, the expiration, and the balance. The terminal verifies
this information, including checking the expiration and whether
the balance is sufficient.

Second, if the above verification succeeds, the terminal
would try to write the entrance data to the Metro Data
file (just using the metro as an example). However, before
writing the entrance data, the AFC card needs to perform a
one-way authentication to the terminal. As shown in Fig. 3, the
terminal gets a random number R from the AFC card, and then
calculates a MAC by encrypting R with a pre-installed key2

shared with this AFC card (right-hand operations in Fig. 4).
Finally, after generating MAC, the terminal sends the

entrance data with the calculated MAC to the AFC card. The
card performs an external authentication (shown in Fig. 4): if
passed, the entrance data would be written on the card. On
the other hand, the external authentication works as follows.
As shown in Fig. 4 (left-hand), the AFC card first encrypts
the random number R with the key shared with the terminal.
Because the AFC card has received the terminal’s MAC, which
has been computed by encrypting the same random number R
with the same key (the right-hand operation in Fig. 4), the AFC
card can check whether the terminal’s authentication passes
through comparing the two ciphertext. If the terminal is fake,
the authentication fails.

After the whole protocol is executed, the passenger will be
allowed to enter the station, and her AFC card has been written
her entrance information.

Exit protocol. When the trip is finished, the passenger taps
her card on the exit terminal. Fig. 5 details the exit protocol.

First, the terminal reads the same basic information as the
entrance stage, including the card number and the expiration,
as well as the entrance data from the card. Then, the terminal
verifies the above information. If the verification succeeds, the
terminal calculates the fare that the passenger needs to pay.
The verification process is the same as the first step in the
entrance protocol.

Second, in order to upload the transaction log information
to the AFC backend, the card and terminal need to perform a
mutual authentication with each other. In other words, besides
the authentication to the terminal, in this step (called debit

2In fact, the key differs in each card. Instead of storing all keys (which is
obviously impossible), the key of each card is generated using a root key and
its card number. The root key is stored in a so-called SAM module attached
on the terminal. The terminal uses SAM to generate the each-card key.

Card Terminal
(with SAM)

Read basic info

Success

Request Random Number Verify

Random Number (R)
Calculate

MACEntrance Data (with MAC)

Success

Fig. 3: The entrance protocol.

Generate Random
Number (R)

Secret
Key (K)

=?

Accept

Reject

Secret
Key (K)

Smart Card Terminal

Fig. 4: External authentication, used by the card to validate
the terminal.

checking step), the terminal also needs to check whether
the AFC card is emulated or fake. The process that the
card authenticates the terminal is almost the same as the
authentication step in the entrance protocol. On the contrary,
i.e., the terminal authenticating the card, the AFC card needs
to use its private transaction key TK to generate a session
key SK and a MAC’ (generated using the SK), and then sends
them to the terminal for the authentication. The most important
property in this step is: a fake or emulated AFC card cannot
have a transaction key to pass the authentication.

After the mutual authentication, the terminal uploads the
transaction information to its backend.

Card Terminal
(with SAM)

Read basic info &
 entrance data

Success

Debit (with MAC)
Verify &

Calculate fare

Success (with MAC’) Upload

Fig. 5: The exit protocol.

12

Flaw!

organized in a hierarchical tree structure. Each file is identified
by its unique file identifier. As an example, Fig. 2 shows the
file structure of CTC. The basic card information including
card number, card type, and expiration is stored under the root
directory. The data involved in bus or metro transactions are
stored in the purse directory.

Entrance protocol. When a passenger (with an AFC card)
wants to enter a station, the AFC system needs to execute the
entrance protocol, which is shown in Fig. 3.

First, the station’s terminal requests and reads the basic
information of this passenger’s AFC card, including the card
number, the expiration, and the balance. The terminal verifies
this information, including checking the expiration and whether
the balance is sufficient.

Second, if the above verification succeeds, the terminal
would try to write the entrance data to the Metro Data
file (just using the metro as an example). However, before
writing the entrance data, the AFC card needs to perform a
one-way authentication to the terminal. As shown in Fig. 3, the
terminal gets a random number R from the AFC card, and then
calculates a MAC by encrypting R with a pre-installed key2

shared with this AFC card (right-hand operations in Fig. 4).
Finally, after generating MAC, the terminal sends the

entrance data with the calculated MAC to the AFC card. The
card performs an external authentication (shown in Fig. 4): if
passed, the entrance data would be written on the card. On
the other hand, the external authentication works as follows.
As shown in Fig. 4 (left-hand), the AFC card first encrypts
the random number R with the key shared with the terminal.
Because the AFC card has received the terminal’s MAC, which
has been computed by encrypting the same random number R
with the same key (the right-hand operation in Fig. 4), the AFC
card can check whether the terminal’s authentication passes
through comparing the two ciphertext. If the terminal is fake,
the authentication fails.

After the whole protocol is executed, the passenger will be
allowed to enter the station, and her AFC card has been written
her entrance information.

Exit protocol. When the trip is finished, the passenger taps
her card on the exit terminal. Fig. 5 details the exit protocol.

First, the terminal reads the same basic information as the
entrance stage, including the card number and the expiration,
as well as the entrance data from the card. Then, the terminal
verifies the above information. If the verification succeeds, the
terminal calculates the fare that the passenger needs to pay.
The verification process is the same as the first step in the
entrance protocol.

Second, in order to upload the transaction log information
to the AFC backend, the card and terminal need to perform a
mutual authentication with each other. In other words, besides
the authentication to the terminal, in this step (called debit

2In fact, the key differs in each card. Instead of storing all keys (which is
obviously impossible), the key of each card is generated using a root key and
its card number. The root key is stored in a so-called SAM module attached
on the terminal. The terminal uses SAM to generate the each-card key.

Card Terminal
(with SAM)

Read basic info

Success

Request Random Number Verify

Random Number (R)
Calculate

MACEntrance Data (with MAC)

Success

Fig. 3: The entrance protocol.

Generate Random
Number (R)

Secret
Key (K)

=?

Accept

Reject

Secret
Key (K)

Smart Card Terminal

Fig. 4: External authentication, used by the card to validate
the terminal.

checking step), the terminal also needs to check whether
the AFC card is emulated or fake. The process that the
card authenticates the terminal is almost the same as the
authentication step in the entrance protocol. On the contrary,
i.e., the terminal authenticating the card, the AFC card needs
to use its private transaction key TK to generate a session
key SK and a MAC’ (generated using the SK), and then sends
them to the terminal for the authentication. The most important
property in this step is: a fake or emulated AFC card cannot
have a transaction key to pass the authentication.

After the mutual authentication, the terminal uploads the
transaction information to its backend.

Card Terminal
(with SAM)

Read basic info &
 entrance data

Success

Debit (with MAC)
Verify &

Calculate fare

Success (with MAC’) Upload

Fig. 5: The exit protocol.

13

Large-scale Invisible Attack on AFC Systems
with NFC-equipped Smartphones

Fan Dang⇤, Pengfei Zhou⇤, Zhenhua Li⇤, Ennan Zhai†, Aziz Mohaisen‡, Qingfu Wen⇤, Mo Li§
⇤School of Software, Tsinghua University, China

{dangf13, wenqf15}@mails.tsinghua.edu.cn, {zhoupf05, lizhenhua1983}@tsinghua.edu.cn
†Department of Computer Science, Yale University, USA

ennan.zhai@yale.edu
‡Department of Computer Science and Engineering, University at Buffalo, USA

mohaisen@buffalo.edu
§Nanyang Technological University, Singapore

limo@ntu.edu.sg

Abstract—Automated Fare Collection (AFC) systems have been
globally deployed for decades, particularly in public transporta-
tion. Although the transaction messages of AFC systems are
mostly transferred in plaintext, which is obviously insecure,
system operators do not need to pay much attention to this issue,
since the AFC network is well isolated from public network (e.g.,
the Internet). Nevertheless, in recent years, the advent of Near
Field Communication (NFC)-equipped smartphones has bridged
the gap between the AFC network and the Internet through Host-
based Card Emulation (HCE). Motivated by this fact, we design
and practice a novel paradigm of attack on modern distance-
based pricing AFC systems, enabling users to pay much less
than actually required. Our constructed attack has two important
properties: 1) it is invisible to AFC system operators because the
attack never causes any inconsistency in the backend database of
the operators; and 2) it can be scalable to large number of users
(e.g., 10,000) by maintaining a moderate-sized AFC card pool
(e.g., containing 150 cards). Based upon this constructed attack,
an HCE app, named LessPay, was developed in our research.
Our real-world experiments demonstrate not only the feasibility
of our attack (with 97.6% success rate), but also its low-overhead
in terms of bandwidth and computation.

I. INTRODUCTION

Automated Fare Collection (AFC) systems have been glob-
ally deployed for decades to automate manual ticketing and
charging systems, particularly in public transportation networks.
As transit routes in modern cities are usually quite long, most
of today’s AFC systems adopt a distance-based pricing strategy,
where the transit fee is calculated based on the length of the
trip. To date, billions of AFC cards have been issued across
the world [1].

A typical AFC system leverages a symmetric encryption
method (e.g., based on 3DES [2] or AES algorithms [3]) to
authenticate both the entities and messages involved [4], [5].
When an AFC card is officially issued, an unchanged unique
Transaction Key TK is written into the card, which will be
used to generate a dynamic Session Key SK and a Message
Authentication Code (or MAC) [6] during the debit phase.
Surprisingly, all the other data (i.e., the data other than TK,
SK, and MAC) exchanged between AFC cards and terminals
(i.e., faregates or fareboxes) are in the plaintext format, which

Cloud

AFC Card Pool

Entrance

Exit

2. Fake
Entrance 3. Calculate Price

4. Debit

8. Tr
ansaction

Log

1. Entrance
Data

Web Server

Database
(always in consistency)

AFC Backend

5. Debit 6. Auth
Code

7. Auth Code

Fig. 1: Architectural overview of our designed attack on an
AFC system. Red arrows denote the tampered messages, which
however never cause inconsistency in the database of the AFC
system.

is insecure [7]–[12]. The AFC system operators, nevertheless,
need not to worry about such risky situation, because the
AFC network is well isolated from public networks (e.g., the
Internet). Thus, it is quite difficult, if any attacker wants to
hack into the infrastructure of AFC systems in practice.

Unfortunately, in recent years the advent of Near Field
Communication (NFC)-equipped smartphones has bridged the
gap between the AFC network and the Internet, thus putting
AFC systems in a highly dangerous situation. Nowadays, the
NFC module has become a typical component of mainstream
smartphones such as iPhone 6 and 6s. It operates at the
same frequency (13.56 MHz) and implements the same
communication standard (ISO/IEC 7816 and ISO/IEC 14443)
as those in AFC systems [13]. Moreover, it can work in a
special Host-based Card Emulation (HCE) mode [14] that
allows any Android application to emulate an AFC card and
talk directly to an AFC terminal.

Motivated by the above situation, we design, implement
and test a novel paradigm of attack on modern distance-based
pricing AFC systems. The goal of this study is to investigate
the possibility of paying much less than actually required. As
the basic requirements of launching such attacks, the users only

Attack model!

14

Tampering Entrance Data!

1. Collecting entrance data
We developed a lightweight app (different from LessPay app)
to specifically collect data.

2. Obtaining data structure of entrance data

3. Obtaining station information
Reverse an app E-Card Tapper（e卡贴）

4. Tampering the entrance data
Location based

TABLE I: Metro Entrance Data

Entrance Data Enter Time Metro Line Station Balance When Entering
1 1512051417043D014C1D 2015-12-05 14:17 4 Station A 75.00
2 1511301135020801B009 2015-11-30 11:35 2 Station B 24.80
3 15112215225E1D01AC0D 2015-11-22 15:22 X Station C 35.00
4 15112009560A11016612 2015-11-20 09:56 10 Station D 47.10
5 15111220090401015203 2015-11-12 20:09 1 Station E 8.50

III. ATTACK DESIGN AND LESSPAY IMPLEMENTATION

In this section, we first present how we design our attack
(in Section III-A and Section III-B) and the implementation
of the LessPay app (in Section III-C).

As shown in Fig. 1, our attack has six steps (i.e., Step 1-2
and Step 4-7). Step 3 and 8 do not belong to our attack, since
they occur on the terminal side and are not controlled by us.
Step 1-2 and Step 4-7 formulate two important phases in our
attack: tampering entrance data (Step 1-2) and relay attack on
AFC card (Step 4-7). We now detail each of the phases.

A. Tampering Entrance Data
In order to tamper the entrance data, we need to know two

important things: 1) the data structure of entrance data, and 2)
the station data, e.g., GPS latitude and longitude coordinates.
In this section, we describe a collection of approaches to infer
the above information.
Collecting entrance data. Instead of collecting entrance
data by physically accessing metro stations, we developed
a lightweight app (different from LessPay app) to specifically
collect data listed in Fig. 2. To attract users to download the
app, the app itself provides useful features including parsing
the balance and transaction histories (which metro line and
when the user rode, as well as the fare) when the user taps
the card on her NFC smartphone. We distributed this app in
Google play. With the agreement of our users, we collected
these anonymous data (the card is innominate) from 97 different
cards.
Obtaining data structure of entrance data. By collecting
the entrance data, we analyze it and try to learn its structure.
For example, Table I lists five items of our collected data. By
observing and cross-checking the data, we find that the metro
entrance data contains the following elements:

• The entrance time (yyMMddhhmm format, 5 bytes3)
• The entrance metro line number (1 byte)
• The entrance station identifier (1 byte)
• The balance when entering the station (little endian in 2

bytes, e.g., 4C1D represents 0x1D4C (7500) cents)
Thus, we obtain the data structure of entrance data, as shown

in Fig. 6.
Obtaining station information. Rather than collecting station
data by visiting each station (seems impossible), we found a
third-party application called E-Card Tapper [16], which is able
to parse the transaction histories as well as the trip records and

3Noted using patterns for formatting and parsing in JDK 1.8. [15]

date & time
(YYMMDDhhmm)

station
line

01 balance

Fig. 6: Data structure of entrance data.

details. Driven by this finding, we reversed this application
using Apktool [17] and dumped the station data from the inner
SQLite database of E-Card Tapper in order to extract its stored
station information, such as the station identifier.

Besides this basic information on stations, we also need
to infer the GPS latitude and longitude coordinates of each
station. Thus, we get the location coordinates of stations using
Google Maps.
Tampering the entrance data. We now already have enough
information (i.e., entrance data structure and station informa-
tion) to tamper the entrance data. In our LessPay implemen-
tation, as shown in Fig. 1, the web server in the cloud is
responsible for generating the fake entrance data based on
our above collected data. To falsify a piece of valid entrance
data, we simply prepare the legitimate entrance time, station
information, and the balance. In order to minimize the fare,
our cloud will generate the proper entrance data according
to the destination. More details about the implementation of
tampering the entrance data is described in Section III-C.

B. Relay Attack on AFC Card
This phase covers Step 4-7 shown in Fig. 1. During this

phase, our purpose is to try to pass the mutual authentication
in the exit protocol (mentioned in Section II). This is because
our emulated card receives a debit from the terminal, and
the debit is protected by transaction key TK via the generated
session key SK and MAC’ (mentioned in Section II). In practice,
because a contactless smart card is a combination of MCU
(microcontroller unit, like the most popular Intel 8051) and
an RF (radio frequency) module, under the protection of the
firmware in the MCU, the TK is not readable. Therefore, it
is impossible to emulate an AFC card with debit support. In
other words, the challenge in this phase is how we can get a
transaction key TK for our emulated card to make it pass the
mutual authentication.

To address this challenge, we use the physical card equipped
with TK to bypass this obstacle. This physical card is put in
the cloud’s AFC card pool (see Fig. 1), and it corresponds to
the emulated card that receives the debit from the terminal.
In other words, in LessPay, the emulated card should have a

15

System Implementation!

Server with 100Mbps network

5 ACR 122u readers with 5 CTC cards

Cellphones:
- Samsung Galaxy S5
- Huawei Mate 7
- Moto XT1095
- LGE Nexus 5X

MNOs:
- LTE-TDD
- LTE-FDD

16

System Implementation!

Card Pool

Dispatcher

Card 1
Card 1

Card 1
Card 1

Available Cards

Card 1
Card 1

Card 1
Card 1

In Use Cards

Timeout /

Transaction
 Finished

Lock

HTTP Request HTTP Response

New client:
Fetch a new card

In-use client:
Read from pool

Fig. 7: Card pool scheduler.

IV. PERFORMANCE EVALUATION

This section evaluates LessPay through attacking real AFC
systems in City X. In this evaluation, we aim to answer the
following three questions:

• How much money users can “save” through using LessPay
(in Section IV-B)?

• What is the overhead of using LessPay (in Section IV-C)?
• Whether LessPay can support to large number of users

(in Section IV-D)?

A. Experimental Setup
We recruited 100 volunteers to use LessPay. These users are

equipped with HCE Android smartphones. The typical models
are Samsung Galaxy S5, Huawei Mate 7, Moto XT1095, and
LGE Nexus 5X. 62 users use LTE-TDD network, and the
others use LTE-FDD network.

The experiment lasted for three months (from Jan. 10th to
Apr. 10th, 2016). Each user was asked to use LessPay 40 times
per month, with a total of 12,000 tests performed.

B. How Much We Can Save?
We now answer the first evaluation question: how much

money users can “save”. The metro fares in City X vary from
$3 to $9 (in local currency) according to the distance. During
the 12,000 tests, the “legitimate” fares are presented in Fig. 8(a).
The average fare that users should pay is $5.03. After using
the LessPay app, all users only need to pay $2.03 instead of
the original fare of $3 (i.e., without using LessPay). This is
clear using LessPay enables users to pay less than the users
should pay. $25,181 in total is “saved” (see Fig. 8(b)).

As shown in Fig. 8(b), we also noticed that among these
tests, there are 2.4% cases that do not succeed, which means
these 2.4% attacks fail to “save” the money of our users.
According to the log, we found that the reason is the poor
network connection – the DEBIT command requires relatively
good quality Internet connection.

C. System Overhead
We evaluate the overhead of LessPay based on two aspects:

client-side overhead and cloud-side overhead. The former one

(a) Users should pay the fares from
$3 to $9.

(b) Except for 2.4% failures, users
actually paid only $3.

Fig. 8: The fares that users should pay and actually paid.

means the overhead on smartphones, while the latter one means
the overhead on the cloud server side.
Client-side overhead. The client-side overhead of LessPay
comes from three sources: memory, network traffic, and battery
usage. The typical memory usage is 20MiB, which is modest.

In terms of bandwidth overhead, our measured results show
that the size of a single request is 48 bytes (16-byte location
and 32-byte user token). The size of a single response is 20
bytes (6-byte card number, 4-byte balance, and 10-byte entrance
data). Including TCP handshakes, and TCP / HTTP headers,
the total network traffic cost is less than 1KB. The cumulative
distribution function (CDF) of network traffic consumed in
these 12,000 tests are shown in Fig. 10. The average network
traffic in all tests is 21.8KB, which costs only cents. For 80%
users, the network traffic cost is less than 36KB. The average
total traffic cost in a month (calculated over 40 trips) is less
than 1MB.

To understand the overhead of LessPay on battery life, we
record the battery power consumption in these tests. As shown
in Fig. 11, the average power consumption per trip is 3.4
mWh, which is extremely low given that the battery capacity
of popular smartphones lies between 5 - 20 Wh [21].
Cloud-side overhead. Fig. 9 illustrates the CPU utilization of
the server on a typical day. The web service is not a CPU-
bound application. In most time, the CPU usage is as low as 1
⇠ 2%. Even in rush hours (e.g., 7 - 9 A.M.), the CPU usage
is below 15%.

The inbound/outbound bandwidth for cloud-side server is
quite low. There is no network traffic when no users turn the
app on. As we pointed out, the traffic in each round-trip is
less than 1KB. As a result, network with 100Mbps bandwidth
is able to serve hundreds of thousands of users.

D. Scalability

We now explore whether LessPay can scale to large number
of users. The scalability of LessPay depends on the number
of physical cards in the cloud-side pool. In other words, more
physical cards can make LessPay support more users. In
order to evaluate the scalability of LessPay, we conducted a
simulation study. The simulation assumes: 1) users use LessPay
in rush hours, 2) all the users use LessPay within two hours,

17

Performance!

$ 3
97.6%Failure

2.4%

$ 3
12.7%

$ 4
23.3%

$ 5
34.4%

$ 6
15.5%

$ 7
7.7%

$ 8
5.1%

$ 9
1.3%

Users should pay the fares
from $3 to $9.

Except for 2.4% failures,
users actually paid only $3.

18

Performance!

0 50 100 150 200
Card Pool Size

0

4000

8000

12000

16000

U
se

rs
Service Denial Rate = 0.1
Service Denial Rate = 0.2

19

Performance!

20

Countermeasures!

1. Switch to online transactions
2. Encrypt/sign data
3. Use secure messaging in ISO/IEC 7816-4
4. Detect relay attack

21

Conclusions!

1.We construct a large-scale invisible attack on AFC systems with NFC-
equipped smartphones, thus enabling users to pay much less than
actually required.

2.We develop an HCE app, named LessPay, based on our constructed
attack.

3.We evaluate LessPay with real-world large-scale experiments, which not
only demonstrate the feasibility of our attack, but also shows its low-
overhead in terms of bandwidth and computation.

Q&A

